

Welcome to FITS

Inference of population-genetics parameters from time-series data.

FITS (Flexible Inference from Time-Series data) comes in two distributions:

	Graphical user interface (GUI) distribution for Windows and MacOS

	Command line interface (CLI) distribution for Linux, Windows and MacOS

Before you start

	Compiling from source

	FITS input

	FITS output

Using FITS

	Using the graphical interface

	Using the command line interface

	Use cases
	Fitness inference

	Mutation rate inference

	Population size inference

	Trajectory simulations

	Considering Sample Effect

Compiling from source

The most recent version of FITS is available here [https://github.com/SternLabTAU/FITS/releases/latest].
In order to compile, FITS requires the Boost library 1.69 [https://www.boost.org/users/history/version_1_69_0.html] and a C++11 supporting compiler. We used gcc 8.2 on Linux (Centos), Clang provided with Xcode9 on MacOS (High Sierra) and MinGW provided with Qt 5.12 on Windows 10 & 7.

Note

Before you start, make sure GCC is in the PATH.

Compiling the command line interface

	Download and extract the Boost library 1.69 [https://www.boost.org/users/history/version_1_69_0.html] to a convenient location.

	Compile all *.cpp files, referring the compiler to the Boost libraries, e.g.: g++ -std=c++11 -O3 -o fits1.3.2 -I/path/to/boost/ -L/path/to/boost/libs *.cpp

(here we tell gcc to use c++11 standard, use optimization (-O3) and name the output file (-o) fits1.3.2).

	Run FITS with no command line arguments to get the help text

	Run FITS with the proper syntax (see Using the command line interface) in order to generate data or infer the required parameter

Compiling the graphical user interface

In order to compile the GUI, you will need (in addition to Boost) the Qt framework, along with Qt Creator. Both are available in open source license here [https://www.qt.io/download].

Note

When installing the Qt framework, make sure you also install the included MinGW compiler.

	Extract the source code zip folder in your favorite location.

	Open Qt Creator.

	Click File>Open file or project and locate the project file (fits_gui.pro)

	Within the project file, replace placeholder text next to __INCLUDEPATH__ with the path to the boost library

	Click “fits_gui” in the left toolbox and make sure the configuration is set to Release.

	Click Build>Build All. After build completion, FITS executable will be found in the Build directory (you can see where it is under Projects>Build directory that is available from the left toolbar.

	Move fits_gui.exe to a new folder. Open the console and navigate to that folder.

	
	For windows: Locate windeployqt.exe under bin directory in the Qt installation folder. Run windeployqt.exe with fits_gui.exe as its sole argument: path/to/windeployqt.exe fits_gui.exe.

	For MacOS: Locate macdeployqt.exe under bin directory in the Qt installation folder. Run macdeployqt with fits_gui as its sole argument: path/to/macdeployqt fits_gui.

FITS input

FITS requires two types of input: Data file and Parameters file.

Data file

This file is expected to hold observed allele information from the system under study. FITS expects a tab-delimited textual file, with following columns:

	gen for the generation of the observation

	allele for the observed state

	freq for the measured frequency for that state

	position for the position number for which the frequency data is given (optional)

Note

FITS assumes the columns to appear in the above order.

Note

The allele with the highest frequency at the first available time point will be defined as WT (w=1).

Example data file

	gen

	allele

	freq

	position

	0

	0

	1

	1

	0

	1

	0

	1

	1

	0

	1

	1

	1

	1

	0

	1

	2

	0

	0.99999

	1

	2

	1

	1e-05

	1

	3

	0

	0.9999899998

	1

	3

	1

	1.00002e-05

	1

	4

	0

	0.9999899998

	1

	4

	1

	1.00002e-05

	1

	5

	0

	0.9999600016

	1

	5

	1

	3.99984e-05

	1

You can also download an example.

Note

For each generation, the sum of frequencies for the different alleles should be 1.

Note

FITS accepts allele frequencies at a given loci. Sequencing techniques tend to vary in their accuracy, so sometimes the provided allele frequencies may be inaccurate. If using inaccurate input, FITS inferences may be inaccurate as well. Specific examples include:

	Inference of fitness of highly deleterious mutations where the accuracy threshold of sequencing is worse than the mutation rate.

	Inference of mutation rate from neutral alleles when the number of generations X the mutation rate is lower than the accuracy threshold of the sequencing.

	Inference of mutation rate or fitness when very shallow sequencing is available (due to limited sampling or limited sequence coverage).

Parameters file

This file provides FITS with population genetics parameters information of the system under study.
Each line in this file represents a different parameter to set, where a space exists between the name of the parameter and its value: <parameter_name> <parameter value>.

Note

If you want to put comments within the parameters file, just add # at the beginning of the comments’ lines.

You can also download an example.

General parameters

	Parameter name

	Type

	Description

	N

	Integer

	Size of population

	sample_size

	Integer

	Size of observed population (e.g., sequenced genomes)

	bottleneck_size

	Integer

	Size of the population transferred on a bottleneck event

	bottleneck_interval*

	Integer

	Number of generations separating between bottleneck events (default: 0)

	num_alleles

	Integer

	Number of alleles observed in all loci

	mutation_rateX_Y

	Float

	Rate of mutation of allele X to allele Y. Not required if mutation rate is to be inferred

	fitness_alleleX

	Float

	Fitness value assigned to allele X. Not required if fitness is to be inferred

	logistic_growth*

	Float

	1: model the population growth throughout the generations with a logistic growth model (default: 0)

	logistic_growth_K

	Float

	Logistic model - upper bound

	logistic_growth_r

	Float

	Logistic model - proportionality constant

*parameter value of 0 means disabled/off; positive values mean enabled/on.

ABC parameters

	Parameter name

	Type

	Description

	num_samples_from_prior

	Integer

	How many simulations to perform

	acceptance_rate

	Float

	Fraction of best simulations to utilize for the inference of the parameter.

Single simulation

	Parameter name

	Type

	Description

	num_generations

	Integer

	Number of generations to simulate

	init_freq_alleleX

	Float

	Initial frequency of allele X

Fitness inference parameters

	Parameter name

	Type

	Description

	fitness_prior

	Text

	
One of the following:

uniform (for Uniform distribution)

log_normal (based on Bons et al. 2018 [https://doi.org/10.1093/ve/vey029])

fitness_composite

smoothed_composite (default)

See the distribution of the above priors on a (0,2) fitness here

	min_fitness_alleleX

	Float

	The minimum fitness value (inclusive) that may be assigned to allele X

	max_fitness_alleleX

	Float

	The maximum fitness value (exclusive) that may be assigned to allele X

Mutation rate inference parameters

X and Y are alleles defined in the data file (i.e., 0 and 1).

	Parameter name

	Type

	Description

	min_log_mutation_rateX_Y

	Float

	Minimum (inclusive) [image: n] for mutation rate [image: 10^n] from alleleX to allele Y

	max_log_mutation_rateX_Y

	Float

	Maximum (exclusive) [image: n] for mutation rate [image: 10^n] from alleleX to allele Y

Population size inference parameters

	Parameter name

	Type

	Description

	Nlog_min

	Float

	Minimum (inclusive) exponent [image: n] for population size [image: 10^n]

	Nlog_max

	Float

	Maximum (exclusive) exponent [image: n] for population size [image: 10^n]

FITS output

General

FITS infers population genetics parameters using the Approximate Bayesian Computation (ABC) method.
The output of this method is a distribution of values that explain the observed allele frequencies with the highest probabilities (also called the posterior distribution).
A common practice is to take the median of this distribution as the inferred value of the parameter under study.

The results below are outputted for all inferences.

	Result header

	Description

	median

	The median value of the posterior distribution. This is practically the inferred population genetics parameter.

	MAD

	Median Absolute Deviation index (MAD [https://en.wikipedia.org/wiki/Median_absolute_deviation]) of the posterior distribution.

	min

	The minimum value in the posterior distribution.

	max

	the maximum value in the posterior distribution.

	pval

	The result of a statistical test about the informativeness of the posterior distribution, with a null hypothesis that the posterior distribution is as informative as the prior distribution.

Fitness inference results

In addition to the General reported values, in fitness inference more data are available:

	Result header

	Description

	allele

	The allele for which the results are reported

	DEL(%)

	The proportion of the posterior distribution with values below 1.

	NEU(%)

	The proportion of the posterior distribution with values equal to 1.

	ADV(%)

	The proportion of the posterior distribution with values above 1.

	category

	A possible classification of the allele into {LETHAL,DEL,NEU,ADV}, based on the inferred fitness value.

Note

Some fitness priors rarely choose the exact value of 1 and therefore NEU(%) will approach zero, even for neutral alleles.

Mutation rate inference results

FITS infers the mutation rates between all defined alleles. Accordingly, the output table contains the target allele in the first row and the source allele in the first column.

Note

In Evolve & Resequence (E&R) studies, when the population is homogeneous at first generation,
in the absence of more information the inference of the rates between the minor allele to the major will be insignificant, so the pval should be taken into account.

Population size inference results

See the General inference results.

Using the graphical interface

After opening FITS, the following screen will be visible:

[image: FITS main screen]
FITS main screen.

Click the Browse... button near the Parameters label to load a parameters file (example Parameters file).

Note

The loaded parameters may be viewed using the View button.

From the given parameters, FITS will automatically identify the possible inference mode (in the example below, Fitness inference mode).

To load the data file, click Browse... near the Data label just below the Parameters label. Locate and select the Data file.

Note

FITS expects the data file to be tab-delimited. If using Office Excel, save your worksheet as tab delimited file.
Verify the content and the format of the file if FITS fails to run.

Within the Actions area, FITS will automatically suggest available actions according to the parameters available in the parameters file.
Press Go! to perform the selected action. FITS will show a progress bar and estimated time to completion.

The inference results are given in the Output area. It may be copied to the clipboard (for example, to be pasted into a spreadsheet). Inference output, prior and posterior distributions may be exported to text files.

[image: FITS main screen]
FITS after making an inference.

The inference results are explained in the FITS output page.

Using the command line interface

Running fits with no parameters prints the help screen to the console, listing possible usage syntaxes. For fitness inference, as an example, the syntax is:

fits -fitness <param_file> <actual_data_file> <posterior_file> <summary_file> (optional: <prior_file>)

Use cases

Fitness inference

In Evolve & Resequence (E&R) studies, a population is grown for a period of time under a given condition and sampled at several time points.
The frequencies of genetic variants or phenotypes for the different time points are measured, and we’d like to infer the fitness that is associated with each specific variant (or phenotype).
An example for such frequency data, sampled for 15 generations and determined for frequency is described here:

The size of the population is estimated to be 100,000. Therefore the parameter N 100000 was set.

The mutation rate is estimated to 1:100,000 (or 10-5). Therefore the parameter mutation_rate0_1 1e-05 was set.

We expect the fitness values of the phenomena to be between 0 (the minimum possible fitness value) and 2 (very adaptive fitness). Therefore the parameter min_fitness_allele1 0.0 was set, to indicate zero minimal expected fitness and max_fitness_allele1 2.0 as well, to indicate the maximal possible fitness value of two.

The prior we chose for this analysis was smoothed_composite, a prior that is built towards typical fitness landscapes. Therefore the parameter fitness_prior smoothed_composite was set.

We want the ABC framework to perform 100,000 simulations, and accept the fitness value from the best 1,000 simulations.
Therefore the parameter num_samples_from_prior 100000 was set, to indicate 100,000 simulations, and the parameter acceptance_rate 0.01 was set, to indicate that the top 1% simulations will be used to decide on the fitness value of this allele.

The data file for a simulated neutral allele (fitness of 1) under a populations size of 105 and a mutation rate of 10-5 is available here. The corresponding parameters file is available here.

The inferred fitness value by FITS was practically 1:

[image: Fitness 1 inferred]
FITS inferred a fitness value of 1.004 for a simulated neutral allele.

Mutation rate inference

A common problem is the inference of the rates of mutations between two (or more) alleles.
FITS supports such inference by harnessing prior knowledge about the fitness of the mutant allele(s) (say, from competition essay) and and the size of the population.
A particular example for a case where such inference can be highly accurate is the usage of frequencies of multiple positions with equal fitness.
In many biological entities synonyomus mutations approach neutrality and therefore may be used for mutation rate inference. In this example we’ll highlight how this can be done.
We simulated 10 independent loci using fitness value of 1, population size of 100,000 and mutation rate of 10-5 and measured their frequencies for 15 generations.

The minimum and maximum considerable mutations rates should be provided within the parameters file, using the log value.
For this example, we use considerable mutation rates between 10-7 and 10-3, which will be defined between the wildtype allele (0) and the mutant allele (1) and vice-versa.
For providing the minimal log mutation rate between the wildtype allele and the mutant we set min_log_mutation_rate0_1 -7 and its reciprocal min_log_mutation_rate1_0 -7.
For providing the maximal log mutation rate between the wildtype allele and the mutant we set max_log_mutation_rate0_1 -3 and its reciprocal max_log_mutation_rate1_0 -3.

We used neutral alleles and therefore set the wildtype and mutant alleles’ fitness to be one: fitness_allele0 1.0 and fitness_allele1 1.0.

The data file for simulated neutral alleles (fitness of 1) under a populations size of 105 and a mutation rate of 10-5 is available here. The corresponding parameters file is available here.

[image: Mutation rate inferred]
FITS inferred 0 → 1 mutation rate of 8.67*10-6, and 1 → 0 mutation rate of 1.15*10-5.

Population size inference

If the mutation rates are known and the fitness of the measured allele is known, then the population size parameter may be inferred.
Similar to the mutation rate inference, this can be performed by using frequency data from several loci that has the same fitness values.
Here we simulated 10 neutral positions for 15 generations, using a population size of 100,000 and a mutation rate of 10-5.

Our prior knowledge suggests that the population size may be in the range between 104 and 107.
We therefore set the parameter Nlog_min 4 to indicate minimum population size of 104.
We also set the parameter Nlog_max 7 to indicate the maximum population size of 107.

Our prior knowledge also suggests that the alleles we measured are neutral, and therefore we set the wildtype and mutant alleles to have a fitness of 1:
fitness_allele0 1.0 and fitness_allele1 1.0.

Other parameters such as mutation rates, number of simulations and the sampling rate are similar to the Fitness inference example.
The example data file is available here. The corresponding parameters file is available here.

[image: Population size inferred]
FITS inferred a population size of 5.18*105.

Trajectory simulations

Sometimes, we wish to have frequency data generated. Since simulations are a cornerstone on which FITS is relying on,
it is possible to ask the framework to perform simulations of frequencies for given mutation rates, population size and fitness value.

In order to do so, we need to provide these three parameters as described in previous examples.
For this example, we’ll use a mutation rate of 10-3, a fitness of 1.02 and a population size of 105.

We wish to simulate two alleles only. We therefore set num_alleles 2 to indicate two alleles.

We set for the two alleles the fitness values of 1 for the wildtype and 1.02 for the mutant: fitness_allele0 1.0 and fitness_allele1 1.02.

We set the corresponding (equal) mutation rates: mutation_rate0_1 0.001 and mutation_rate1_0 0.001.

The population size is set by defining N 100000.

The last two things to consider are the frequency of the alleles in the beginning of the simulation, and the number of generations to simulate.
Here we will assume that the wildtype allele is fixated for the beginning of the simulation. We’ll therefore set init_freq_allele0 1 and init_freq_allele1 0.
To control for the number of generations (100 in our example) we set num_generations 100.

Note

There’s no need to load a Data file in order to perform the simulations.

[image: Simulation results]
Simulation results are available in the Output area.

Considering Sample Effect

Population bottlenecks are common during any evolutionary scenario, whether in vivo or in vitro in experimental populations. In particular during serial passaging, only a fraction of the progeny will be carried on to the next passage. An additional layer of sampling also exists: the number of genomes that are sampled to be sequenced may often be much smaller than the population size itself. FITS can account for both of these types of sampling effects by using the following three parameters: bottleneck_size, bottleneck_interval and sample_size , as illustrated below:

[image: Bottleneck vs. sample size]

Index

 _static/up.png

_images/pop_size_after.png
] FITS 1,116 (c) Tal Zinger, Ster Lab, TAU

Input
Data ples/pop_size/data.tit
Parameters p_size/parameters.txt

Actions

Single simulation STOP
Fitness inference 0%

Mutation rate inference Ready.

Population size inference
Output
medan [MAD min max pal

[Copyoutputtable | [Save prior
[save summary/output... | [Save posterior.

_images/simulation_after.png
%] FITS 1,116 (9 Tal Zinger, Stem Lab, TAU SN

Input
Data
Parameters ilations/parameters.txt

Fitness inference. 0%

Mutation rate inference Ready.

Population size inference

Output
allele fre | ol
o0 = m
0 0 1.0000000000
0 1 0.0000000000
1 0 0.9991499405 A
Copy output table Save prior.

‘Save summary/output. Save posterior.

_images/fitness_1_inferred.png
%] FITS 1,116 (9 Tal Zinger, Stem Lab, TAU (el

Input
Data mplesfitness/data.txt
Parameters fitness/parameters txt

Actions

Single simulation STOP
Fitness inference
Mutation rate inference ~ Ready.

Population size inference

Output
allelel median MAD min max DEL(%) NEU(%) ADV(%) catd
0 1000 00001000 100000 1000 00 WT
1 1004 00560709 1475474 00 526 2AQ

[Copyoutputtable][Saveprior]
[save summaryloutput... | [Save posterior.. |

_images/mutation_rate_inferred.png
] FITS 1,116 (c) Tal Zinger, Ster Lab, TAU

Input
Data ‘mutation_rate/data txt

Parameters in_rate/parameters txt

Actions

Single simulation STOP
Fitness inference 0%

Mutation rate inference Ready.

Population size inference

Output

fom to median MAD min max il
0 1 867e-006 1.95e-006 217e-006 1.83e-005 111e-059
10 *115e-005 113¢-005 1.01e-007 9.90e-004 3.01e-001

[Copyoutputtable][Saveprior]
[save summaryloutput... | [Save posterior.. |

_static/ajax-loader.gif

_images/math/80df9e7af99a4b138ef1b79728d188d25ad9d45a.png
10"

_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png

_static/comment-bright.png

_static/comment-close.png

_images/bottleneck_sample.png
sample_size sample_size

I bottleneck_size

Population at generation Population at generation
t t+ bottleneck_interval

_images/empty_main_screen.png
] FITS 1.1.16 (¢) Tal Zinger, Stem Lab, TAU oo

Input

Data Browse...] [View

Parameters Browse...] [View

Actions

© Single simulation
Fitness inference e R

Mutation rate inference ~ Ready.

Population size inference

Output

[Copyoutputtable || Save prior.]

[save summary/output... | [Save posterior.]

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to FITS

 		
 Compiling from source

 		
 Compiling the command line interface

 		
 Compiling the graphical user interface

 		
 FITS input

 		
 Data file

 		
 Parameters file

 		
 General parameters

 		
 ABC parameters

 		
 Single simulation

 		
 Fitness inference parameters

 		
 Mutation rate inference parameters

 		
 Population size inference parameters

 		
 FITS output

 		
 General

 		
 Fitness inference results

 		
 Mutation rate inference results

 		
 Population size inference results

 		
 Using the graphical interface

 		
 Using the command line interface

 		
 Use cases

 		
 Fitness inference

 		
 Mutation rate inference

 		
 Population size inference

 		
 Trajectory simulations

 		
 Considering Sample Effect

_static/file.png

_static/down-pressed.png

_static/down.png

_static/priors.png
% of prior

% of prior

prior = fithess_composite

prior = log_normal

0.0 0.5 1.0 1.5 20

prior = smoothed_composite

0.0 0.5 1.0 1.5 20

prior = uniform

0.0 0.5 1.0 1.5 2.0
Fitness

0.0 0.5 1.0 1.5 2.0
Fitness

_static/minus.png

_static/plus.png

_static/up-pressed.png

